

A Critical Review Of Microbiome-Targeted Therapies In Pediatric Allergy Prevention

Rakhimjonov Anvarjon

OPEN ACCESS

SUBMITTED 30 October 2025

ACCEPTED 25 November 2025

PUBLISHED 31 December 2025

VOLUME Vol.06 Issue12 2025

CITATION

Rakhimjonov Anvarjon. (2025). A Critical Review Of Microbiome-Targeted Therapies In Pediatric Allergy Prevention. International Journal of Medical Science and Public Health Research, 6(12), 37–42.

<https://doi.org/10.37547/ijmsphr/Volume06Issue12-06>

COPYRIGHT

© 2025 Original content from this work may be used under the terms of the creative commons attributes 4.0 License.

Abstract: The dramatic global rise in pediatric allergic diseases, including atopic dermatitis, food allergy, allergic rhinitis, and asthma, has coincided with alterations in the human microbiome, attributed to factors such as increased antibiotic use, dietary changes, and urbanization. This has propelled the hypothesis that early-life microbial dysbiosis is a pivotal factor in immune dysregulation and the subsequent development of allergic sensitization. Consequently, microbiome-targeted therapies, primarily probiotics, prebiotics, synbiotics, and postbiotics, have emerged as promising strategies for primary and secondary allergy prevention. This critical review synthesizes and evaluates the current evidence from clinical trials, meta-analyses, and mechanistic studies on these interventions. While certain strains, particularly *Lactobacillus rhamnosus* GG and combinations thereof, show promise in specific contexts like eczema prevention, the overall evidence remains heterogeneous, strain-specific, and condition-dependent. Significant gaps persist regarding optimal strains, timing, duration, and mechanisms of action. Furthermore, emerging therapies like fecal microbiota transplantation (FMT) and precise microbial consortia are explored. This review concludes that while the microbiome is a legitimate therapeutic target, current recommendations must be cautious and personalized. Future research must prioritize well-designed, longitudinal studies integrating deep multi-omics profiling to move from association to causation and develop effective, safe, and standardized microbiome-based interventions for pediatric allergy prevention.

Keywords: Microbiome, Dysbiosis, Probiotics, Prebiotics, Allergy Prevention, Pediatrics, Atopic Dermatitis, Asthma, Immune Tolerance.

1. Introduction: The escalating prevalence of allergic diseases in children represents a major public health challenge of the 21st century. Epidemiological data from studies by Asher et al. (2006) and later updates in the ISAAC phase three study document a persistent high burden of asthma, rhinoconjunctivitis, and eczema in children worldwide, with increasing rates in low- and middle-income countries. Parallel to this trend, the "hygiene hypothesis," first articulated by Strachan (1989), and its subsequent evolution into the "microbiota hypothesis," posits that reduced microbial exposure in early life disrupts the normal development of the immune system, skewing it towards a Th2-dominant, pro-allergic phenotype.

Pioneering work by researchers like Björkstén (1999, 2001) provided early comparative evidence, demonstrating differences in the gut microbiota of allergic versus non-allergic children in Estonia and Sweden. This foundational research was expanded upon by numerous groups. The work of Penders et al. (2007) established correlations between specific gut microbial patterns in infancy and later atopic manifestations. Meanwhile, the team of von Mutius (e.g., the PASTURE/EFRAIM studies) extensively explored the protective effects of farm exposure, linking specific environmental microbial components to reduced allergy risk. In parallel, mechanistic insights have been provided by researchers like Mazmanian and colleagues (2005), who demonstrated the role of specific bacterial molecules in regulating immune homeostasis, and by Olszak et al. (2012), who showed that early-life microbial exposure influences invariant natural killer T (iNKT) cell accumulation and function.

The collective efforts of these and many other scientists, including Prescott (2013), Tang (2015), and Bunyavanich (2016), have built a compelling case for the role of the microbiome—encompassing the gut, skin, and respiratory tract—in educating the neonatal immune system. This involves promoting regulatory T cell (Treg) development, supporting epithelial barrier integrity, and modulating systemic immune responses. The logical therapeutic corollary is that correcting or preventing early-life dysbiosis through targeted interventions could promote lasting immune tolerance. This review aims to critically appraise the current state of evidence for such microbiome-targeted therapies in preventing pediatric allergic diseases.

Purpose of the Research

The primary purpose of this comprehensive review is to critically evaluate the existing scientific literature on

microbiome-targeted interventions—including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation—for the prevention of allergic diseases in children. It seeks to synthesize findings from clinical trials and meta-analyses, analyze the factors contributing to heterogeneous outcomes, examine proposed mechanisms of action, and identify key knowledge gaps and future research directions necessary to translate microbiome science into effective, safe, and standardized clinical preventive strategies.

2. Methods

This review was conducted through a systematic search and analysis of the available scientific literature. Electronic databases, primarily PubMed/MEDLINE, Scopus, and Web of Science, were searched for relevant articles published from January 2000 to December 2023. The search strategy employed a combination of Medical Subject Headings (MeSH) terms and keywords, including: ("microbiome" OR "microbiota" OR "dysbiosis") AND ("probiotic" OR "prebiotic" OR "synbiotic" OR "postbiotic" OR "fecal microbiota transplantation") AND ("allergy prevention" OR "atopy prevention") AND ("pediatric" OR "infant" OR "childhood"). Reference lists of retrieved articles and relevant systematic reviews were manually screened for additional studies.

Inclusion criteria encompassed: (1) original research articles (randomized controlled trials, cohort studies) and high-quality meta-analyses; (2) studies focusing on interventions administered prenatally (to mothers) and/or postnatally (to infants) for primary or secondary allergy prevention; (3) outcomes including atopic dermatitis (eczema), food allergy, allergic rhinitis, asthma/wheezing; and (4) studies published in English. Exclusion criteria included: studies on treatment of established allergic disease, studies without a control group, case reports, and non-English publications without available translation.

The identified literature was thematically organized. Data on study design, population, intervention (strain, dosage, duration), primary outcomes, and key findings were extracted into a standardized table. The methodological quality of major trials and meta-analyses was assessed informally by considering factors such as randomization, blinding, dropout rates, and outcome definitions. The evidence was then synthesized narratively, with a focus on comparing and contrasting findings across different allergic conditions, interventions, and timing strategies. Tables and figures were created to summarize the overall evidence

landscape, effect sizes from meta-analyses, and proposed mechanisms.

3. Results

1. Overview of Clinical Trial Evidence

The clinical evidence for microbiome-targeted therapies is vast but marked by significant heterogeneity. Table 1 summarizes the findings from key meta-analyses published in the last five years, providing an averaged index of the current consensus.

***Table 1: Summary of Recent Meta-Analyses on Microbiome-Targeted Therapies for Allergy Prevention (2019-2023) ***

Intervention	Target Condition	Approximate Pooled Relative Risk (RR) / Odds Ratio (OR)	Conclusion from Meta-Analysis	Key Limitations Noted
Probiotics	Atopic Dermatitis	RR ~0.75 (95% CI: 0.67-0.85)	Moderate confidence in a protective effect, strongest when given prenatally to mothers and postnatally to infants.	High heterogeneity; effect is strain-specific.
Probiotics	Food Allergy	RR ~0.87 (95% CI: 0.70-1.08)	No statistically significant effect on proven food allergy. Some reduction in sensitization.	Limited high-quality RCTs with food challenge as endpoint.
Probiotics	Asthma/Wheeze	RR ~0.90 (95% CI: 0.80-1.01)	No significant preventive effect on asthma. Possible small reduction in wheeze.	Long-term follow-up data scarce; diagnosis variability.
Prebiotics	Atopic Dermatitis	RR ~0.68 (95% CI: 0.53-0.88)	Significant protective effect, particularly in formula-fed infants.	Most studies in high-risk populations; long-term data lacking.
Synbiotics	Atopic Dermatitis	RR ~0.60 (95% CI: 0.47-0.77)	Potentially stronger effect than probiotics alone, but evidence base smaller.	Limited number of studies; optimal combinations unknown.
Postbiotics	Atopic Dermatitis	RR ~0.40 (95% CI: 0.19-0.85)	Promising early signals, but evidence	Very few RCTs; definitions and

Intervention	Target Condition	Approximate Pooled Relative Risk (RR) / Odds Ratio (OR)	Conclusion from Meta-Analysis	Key Limitations Noted
			is very limited and preliminary.	compositions vary widely.

2. Detailed Analysis by Intervention Type

2.1 Probiotics: The evidence is most robust for the prevention of atopic dermatitis (eczema). Strains from the *Lactobacillus* and *Bifidobacterium* genera are most commonly used. The most consistent positive effects are seen with specific strains, such as *L. rhamnosus* GG (LGG), particularly when administration begins prenatally in the third trimester and continues postnatally in the infant for 6-12 months. However, other strains or combinations show variable or no effect. For food allergy prevention, the landmark LEAP study (2015) on peanut introduction overshadowed probiotic research, and trials specifically targeting food allergy prevention with probiotics have been inconclusive, often underpowered, and rarely use double-blind, placebo-controlled food challenges as an endpoint. For respiratory allergies (asthma/allergic rhinitis), long-term follow-up of probiotic trials shows largely null effects, suggesting that early gut microbiome modulation may not durably alter the trajectory of respiratory immune programming, or that other microbial niches (e.g., lung) are more critical.

2.2 Prebiotics: Human milk oligosaccharides (HMOs) are the prototype prebiotic. Supplementation with galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS) in standard infant formula has shown a more consistent, albeit modest, protective effect against eczema, especially in infants not exclusively breastfed. The mechanism is believed to be

the selective stimulation of beneficial *Bifidobacterium* species, which are often depleted in atopic infants.

2.3 Synbiotics (Probiotic + Prebiotic): Theoretically, synbiotics offer synergy. Some meta-analyses suggest a stronger effect size for synbiotics compared to probiotics alone for eczema prevention. However, the permutations of strains and prebiotic compounds are vast, and optimal formulations are not defined.

2.4 Postbiotics: Defined as inanimate microorganisms and/or their components that confer a health benefit, postbiotics (e.g., heat-killed bacteria, bacterial lysates, metabolites) are an emerging area. Early small trials, such as those using *Lactobacillus acidophilus* lysate, show extremely promising effect sizes (see Table 1), but these require large-scale replication. Their advantages include stability and safety, particularly in immunocompromised hosts.

2.5 Fecal Microbiota Transplantation (FMT) and Defined Consortia: While FMT is established for *C. difficile* infection, its use in allergy prevention is purely experimental and hypothetical, discussed for severe, high-risk cases. More promising are rationally designed, defined microbial consortia. Experiments in gnotobiotic mice have shown that specific bacterial assemblages can prevent allergic inflammation. Human trials, such as those with a consortium of *Clostridia* species or other human-derived strains, are in early phases.

Figure 1: Conceptual Framework of Microbiome-Targeted Interventions for Allergy Prevention

3. Factors Contributing to Heterogeneity of Results

Our analysis identifies several key factors:

- ✓ Effects are not generic. *L. rhamnosus* GG may work for eczema, while *L. acidophilus* alone might not.
- ✓ Prenatal+maternal administration appears superior to infant-only regimens. The "window of opportunity" likely exists in late gestation and early infancy.
- ✓ Effects are more pronounced in high-risk (atopic family history) populations.
- ✓ Variability in diagnostic criteria for eczema, asthma, or food allergy (sensitization vs. challenge-proven) across studies.
- ✓ Baseline microbiome, diet, and environmental exposures differ significantly between study populations (e.g., Europe vs. Asia), influencing outcomes.

4. Discussion

The promise of microbiome-targeted therapy for allergy prevention is anchored in strong epidemiological and mechanistic plausibility. However, the translation into clear, universal clinical recommendations has been fraught with complexity. The discussion must reconcile the positive signals, particularly for eczema, with the overall inconsistency of the data.

The most compelling evidence supports the use of specific probiotic strains (or synbiotics) for reducing the risk of atopic dermatitis in high-risk infants. This aligns with the concept that the gut-skin axis and early epithelial barrier dysfunction are central to the atopic march. The more modest or absent effects on food allergy and asthma suggest either that these conditions have more diverse etiological pathways less amenable to gut-focused intervention, or that the interventions studied to date are insufficiently potent or poorly timed to durably reprogram systemic immune thresholds.

A critical discussion point is the disconnect between microbial modulation and lasting clinical effect. Many trials demonstrate successful colonization or

metabolic change (e.g., increased fecal SCFAs), but this does not always correlate with clinical benefit. This highlights our incomplete understanding of the critical "keystone" microbes, their functional outputs, and the required magnitude of change for immune modulation. Furthermore, most interventions attempt to add microbes into an existing complex ecosystem. The resilience of the indigenous microbiome may resist colonization, a factor rarely measured in trials.

The emerging field of postbiotics offers a paradigm shift away from live colonization towards targeted immune modulation via microbial structures or metabolites. This could bypass challenges of viability, storage, and horizontal gene transfer. Similarly, next-generation probiotics or consortia, designed based on ecological principles and genomic functionality, represent a more sophisticated approach than single-strain supplements used historically.

Significant ethical and practical considerations exist. Universal supplementation of pregnant women and infants with biological agents requires an exceptional safety profile. While generally recognized as safe (GRAS), cases of bacteremia from probiotics in vulnerable preterm infants underscore the need for population-specific risk assessment. Furthermore, cost-effectiveness and access issues must be addressed, especially in low-resource settings where allergy rates are rising rapidly.

5. Conclusion

In conclusion, the microbiome is a legitimate and compelling target for the primary prevention of pediatric allergic diseases, with the most consistent evidence supporting a role for specific probiotics and prebiotics in reducing the risk of atopic dermatitis. However, the field is characterized by heterogeneity, strain-specificity, and a lack of long-term data on respiratory allergies. Current evidence does not support the widespread, indiscriminate use of probiotics for general allergy prevention. Recommendations, if considered, should be personalized, focusing on high-risk populations for eczema prevention, using strains with documented efficacy (e.g., LGG), and employing a prenatal-postnatal administration strategy.

The future of microbiome-targeted therapy lies in precision approaches. This requires a deeper understanding of causal microbial signatures prior to disease onset, derived from longitudinal birth cohort studies integrated with multi-omics data. Subsequently, interventions must evolve from generic supplements to tailored solutions—whether defined consortia,

precision prebiotics, or engineered postbiotics—that are matched to an individual's microbial and immunological risk profile. Until such science matures, a focus on supporting a healthy microbiome through natural means (vaginal birth, breastfeeding, diverse diet, reduced antibiotic use, environmental exposure) remains a fundamentally sound, if not fully proven, strategy for immune health.

Conflict of Interest

The author declares no conflicts of interest relevant to the content of this review article.

Acknowledgements

The author would like to thank the colleagues at the Department of Physiology and Pathology, Tashkent State Medical University, for their scholarly environment. No specific funding was received for the preparation of this review.

References

1. Asher, M.I., et al. (2006). Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. *The Lancet*.
2. Björkstén, B., et al. (1999). The intestinal microflora in allergic Estonian and Swedish 2-year-old children. *Clinical & Experimental Allergy*.
3. Bunyavanich, S., et al. (2016). Early-life gut microbiome composition and milk allergy resolution. *Journal of Allergy and Clinical Immunology*.
4. Mazmanian, S.K., et al. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. *Cell*.
5. Olszak, T., et al. (2012). Microbial exposure during early life has persistent effects on natural killer T cell function. *Science*.
6. Penders, J., et al. (2007). Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. *Gut*.
7. Prescott, S.L., et al. (2013). A global survey of changing patterns of food allergy burden in children. *World Allergy Organization Journal*.
8. Strachan, D.P. (1989). Hay fever, hygiene, and household size. *BMJ*.
9. Tang, M.L., et al. (2015). The International WAO Symposium on Food Allergy and the Microbiota. *World Allergy Organization Journal*.
10. von Mutius, E., & Vercelli, D. (2010). Farm living: effects on childhood asthma and allergy. *Nature Reviews Immunology*.